
WCAG
Test.

AI-based Front-End Generation

Internship at
iO Digital

In
te

rn
sh

ip
 A

ss
ig

n
m

en
t

D
oc

u
m

en
t

Luuk Briels
467020
0.0.1

Table of Contents.
Co

nt
en

ts
.

1. Context 4
 1.1 Introduction 4

2. WCAG 5
 2.1 Guidelines 5

 1.2 Purpose of test 4

 2.4 Improvements 10

 2.2 Tests 6

3. Conclusion 11

 2.3 Results 7

1.1 Introduction
Co

nt
ex

t.
As one of the important aspects of the proof of concept.
Generated pages should be as WCAG complaint as possible.
WCAG or Web Content Accessibility Guidelines is a benchmark
for website accessibility. Created by the World Wide Web
Consortium (W3C), using WCAG guidelines is the best and
the easiest way of making a website usable for all users. This
is therefor also very important for the pages that the tool
generates. This way, the pages can be properly viewed and
used by all users.

1.2 Purpose of Test

To determine how well the generated pages using the proof of
concept follow and integrate WCAG guidelines, I created this
test. By doing these tests, I can identify which guidelines are
not being followed correctly and propose possible solutions to
solve these issues.

First I will talk more about the WCAG guidelines. Then I show
how I tested the generated pages, checking each item on the
list to see if the page meets the standards. If any issues are
found, I will take detailed notes on what was wrong and why
it didn’t meet the guidelines. After f inding the problems I will
create possible solutions.

2.1 Guidelines
W

CA
G

.
The WCAG guidelines consist of a set of rules related to
accessibility which makes sure that content is more accessible
to people. These guidelines are important for creating an
accessible page. The WCAG guidelines are split into four
main principles: Perceivable, Operable, Understandable, and
Robust. Each of these principles has its own set of guidelines
that need to followed to make the content accessible to all
users.

The f irst principle is Perceivable. This is about making sure
that users can perceive the information that is shown. This
means that content must be shown in a way that users can see
or hear, even if they have any disabilities. For example giving
text alts for non text content like images and videos, makes
sure that users who are visually impaired can still understand
the content through screen readers.

The second principle is Operable. This is about making sure
that users can navigate and use the interface. This includes
making sure that all functionality is available f rom a keyboard
because some users may not be able to use a mouse.

The third principle is Understandable. This is about making
sure that users can understand the information as well as the
operation of the user interface. Some examples of this are
makign text readable and understandable and making sure
that web pages appear and operate in predictable ways.

The fourth principle is Robust. This is about making sure
that content can be used by a wide variety of browsers/user
agents. This means that even when technologies changes, the
content remains accessible.

Each of these principles is important in making the content
accessible to all users. By following these guidelines the
generated pages are both compliant with accessibility
standards and also makes for a better user experience for
everyone.

2.2 Tests

To test the generated pages for compliance with WCAG
guidelines, I used a tool that analyzes the HTML and evaluates
how well the pages meet the WCAG standards. This tool
is off icially provided by W3.org which is the organization
responsible for developing and maintaining the web standards.

The test is done by inputting the HTML code of the generated
pages into the tool. This tool scans the HTML and gives a
report on any accessibility issues it f inds. It highlights areas
where the pages do not meet the WCAG guidelines. This kind
of analysis is important for making sure that the generated
page is accessible to all users.

For the evaluation I did tests on three different page variants.
The f irst variant was a page with no template but styled
using CSS. The second variant was a page with no template
but styled using Tailwind. The third variant was a page that
included a template.

6

In
te

rn
sh

ip
 A

ss
ig

n
m

en
t

D
oc

u
m

en
t

W
CA

G
.

2.3 Results

Test #1 - No template with CSS

The f irst test was done on three different generated pages
that used no template and were styled using plain CSS.
Running the test I found the same problem in all three pages.
The results showed one guideline violation:

“Element style not allowed as child of element body in this
context. (Suppressing further errors f rom this subtree.)”.

This error happened because the CSS was included inside the
<body> tag of the HTML.

This issue happened because the AI generating the HTML is
told to return only the content inside the <body> tag. Because
of this it had no choice but to place the <style> tag within the
<body> which causes the guideline violation.

Test #2 - No template with Tailwind

The second test was done on three different generated pages
that used no template and were styled using Tailwind CSS.
Tailwind is a CSS f ramework that allows you to apply styles
directly through class names added to HTML elements. I chose
to test pages styled with Tailwind because it is a modern and
popular way of doing styling in web development.

When I ran the test on the three generated pages it came
back with no errors. The tool did not f ind any accessibility
issues. This is because the CSS is done via classes instead of
inside the <style>. So the AI did not use the <style> tag at all,
which like the previous test would’ve caused an error if placed
inside the <body>.

8

In
te

rn
sh

ip
 A

ss
ig

n
m

en
t

D
oc

u
m

en
t

W
CA

G
.

2.4 Improvements

Almost all test came back with no errors except one. The
specif ic problem found was related to the placement of
CSS within the HTML. In one of the tests the tool flagged
an issue with the CSS being included inside the <body> tag.
According to standard HTML practices and WCAG guidelines,
style elements should be placed within the <head> section
of the document. Including them inside the <body> is both
considered improper and can also lead to different accessibility
and rendering issues.

This problem happened because the AI is instructed to
generate only the content inside the <body> tag. Because of
this it had no choice but to place the <style> tag within the
<body> which resulted in the guideline violation.

To f ix this issue there are two solutions that can be implemented.
The f irst one is to split the CSS into a separate f ile. By moving
the CSS out of the HTML document and linking to an external
stylesheet makes sure that the styles are applied correctly
without violating any guidelines.

The second f ix is to allow the AI to create the necessary tags
outside of the <body>. By changing the AI’s instructions to
generate a complete HTML document including the <head>
section, it can make sure that the CSS is placed in the correct
location.

Test 3 - Template

The third and f inal test was done on three different generated
pages that used a template. This test was important because I
wanted to determine if the AI would make any changes to the
template that could add WCAG compliance issues. Templates
are f irst created by designers and developers so any changes
made by the AI could potentially change the original design
and create accessibility problems.

Before running the test I took a few steps to make sure the
results are fair. First I reviewed the template itself to make sure
that it was WCAG compliant. I checked all elements of the
template by f irst checking it with the tool. This made sure that
the template was compliant f rom the start in order to isolate
any changes made by the AI during the content generation.

After generating the page I ran the accessibility test using the
tool. The tool did not detect any errors which shows that the
AI had successfully integrated the content into the template
without making any changes that would change the WCAG
compliance.

10

In
te

rn
sh

ip
 A

ss
ig

n
m

en
t

D
oc

u
m

en
t

Co
nc

lu
si

on
.

4 Conclusion

Through a series of tests on different page variants (one
with no template styled using plain CSS, another with no
template styled using Tailwind CSS, and a third using a pre-
designed template), I got some good insights into the WCAG
compliance of the generated pages. The test results showed
that the pages styled with Tailwind and those using templates
were compliant with WCAG standards. However the pages
styled using plain CSS had an issue where the <style> tag
was improperly placed inside the <body> tag which is against
WCAG guidelines. However I mentioned two different solutions
to this issue, which are relatively easy to implement.

